导航:
快速排序 堆排序 桶排序 荷兰国旗问题
友情提示: 代码在这里
本文参照该仓库学习,大家可以star
用于求解 Kth Element 问题,使用快速排序的 partition() 进行实现。
需要先打乱数组,否则最坏情况下时间复杂度为 O(N2)。
用于求解 TopK Elements 问题,通过维护一个大小为 K 的堆,堆中的元素就是 TopK Elements。
堆排序也可以用于求解 Kth Element 问题,堆顶元素就是 Kth Element。
快速选择也可以求解 TopK Elements 问题,因为找到 Kth Element 之后,再遍历一次数组,所有小于等于 Kth Element 的元素都是 TopK Elements。
可以看到,快速选择和堆排序都可以求解 Kth Element 和 TopK Elements 问题。
排序 :时间复杂度 O(NlogN),空间复杂度 O(1)
public int findKthLargest(int[] nums, int k) {
Arrays.sort(nums);
return nums[nums.length - k];
}
堆排序 :时间复杂度 O(NlogK),空间复杂度 O(K)。
public int findKthLargest(int[] nums, int k) {
PriorityQueue<Integer> pq = new PriorityQueue<>(); // 小顶堆
for (int val : nums) {
pq.add(val);
if (pq.size() > k) // 维护堆的大小为 K
pq.poll();
}
return pq.peek();
}
快速选择 :时间复杂度 O(N),空间复杂度 O(1)
public int findKthLargest(int[] nums, int k) {
k = nums.length - k;
int l = 0, h = nums.length - 1;
while (l < h) {
int j = partition(nums, l, h);
if (j == k) {
break;
} else if (j < k) {
l = j + 1;
} else {
h = j - 1;
}
}
return nums[k];
}
private int partition(int[] a, int l, int h) {
int i = l, j = h + 1;
while (true) {
while (a[++i] < a[l] && i < h) ;
while (a[--j] > a[l] && j > l) ;
if (i >= j) {
break;
}
swap(a, i, j);
}
swap(a, l, j);
return j;
}
private void swap(int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}
设置若干个桶,每个桶存储出现频率相同的数,并且桶的下标代表桶中数出现的频率,即第 i 个桶中存储的数出现的频率为 i。
把数都放到桶之后,从后向前遍历桶,最先得到的 k 个数就是出现频率最多的的 k 个数。
给定一个字符串,请将字符串里的字符按照出现的频率降序排列。
荷兰国旗包含三种颜色:红、白、蓝。
有三种颜色的球,算法的目标是将这三种球按颜色顺序正确地排列。
它其实是三向切分快速排序的一种变种,在三向切分快速排序中,每次切分都将数组分成三个区间:小于切分元素、等于切分元素、大于切分元素,而该算法是将数组分成三个区间:等于红色、等于白色、等于蓝色。
给定一个包含红色、白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。
此题中,我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。
public void sortColors(int[] nums) {
int zero = -1, one = 0, two = nums.length;
while (one < two) {
if (nums[one] == 0) {
swap(nums, ++zero, one++);
} else if (nums[one] == 2) {
swap(nums, --two, one);
} else {
++one;
}
}
}
private void swap(int[] nums, int i, int j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
快速排序的思想 nums[one]指向中间的数 中间的数比左边小就swap 比右边大就swap 左边的和中间的排序 中间和右边的排序 (这里只有三个数)